
COP 3223: C Programming (File Processing) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

File Processing In C – Part 2

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (File Processing) Page 2 © Dr. Mark J. Llewellyn

More File I/O
• Let’s look carefully at Practice Problem #1 from the File

Processing Part 1 notes.

• In this program you were to create an input file named

“pracprob1.dat”, where the first line contained the

number of integers that were to be entered by the user, rather

than have the program already have determined this number.

• While this obviously makes the program more versatile, since it

works with any size input, it also means that the data file

contains more than one “kind” of data. In other words, the first

line of the file has a different meaning to the program than do

any of the other lines.

• Remember that C itself does not impose any structure on the

contents of the file, the programmer must do that.

COP 3223: C Programming (File Processing) Page 3 © Dr. Mark J. Llewellyn

The first value read from

the file represents the

number of integers to be

read from the rest of the

file.

All of the rest of the values

in the file represent “user”

entered integer values to

be summed.

COP 3223: C Programming (File Processing) Page 4 © Dr. Mark J. Llewellyn

More File I/O
• Given the file structure that is assumed by the program on page

3, what would happen if the following input file were used as

the input to the program?

The sum of these

numbers is 48. Will the

program produce this

result?

COP 3223: C Programming (File Processing) Page 5 © Dr. Mark J. Llewellyn

More File I/O
• The answer is no! Since the first number in the file was a 4,

this was read into the variable named limit and the for

loop on line 21 executed four times, which means that only the

values 9, 8, 3, and 2 were read from the file. The remaining

values of 5, 7, 8, and 2 were never read by the program!

COP 3223: C Programming (File Processing) Page 6 © Dr. Mark J. Llewellyn

Detecting End-Of-File
• Suppose that our input file consists only of integer values that

we want to sum. In other words, the first number is not

indicating how many numbers are in the file, but is just one of

the numbers that we want to sum.

• Since the program has no way of knowing in advance how

many values will be read from the file to sum, two things

become obvious: (1) we can’t use a for loop, since we don’t

know how many times it will need to be executed, and (2) we

need a way to be able to eventually stop the loop when the

program has read all of the numbers in the input file.

• The solution to (1) is that we must use either a while or

do…while stmt to control the reading from the file.

COP 3223: C Programming (File Processing) Page 7 © Dr. Mark J. Llewellyn

Detecting End-Of-File
• The solution to (2) is that we need a way to determine if we

have seen all the numbers in the file. This is known as

detecting the end-of-file.

• In C, the function used to detect the end-of-file is named feof

and has the following form:

feof (fileptr)

• The feof function returns a non-zero value if the end-of-file is

true for the file referenced by fileptr, otherwise the function

returns 0.

• Think of the end-of-file marker as a “special” character in the

file that you can’t see but appears right after the very last actual

value in the file. The next example illustrates using feof.

COP 3223: C Programming (File Processing) Page 8 © Dr. Mark J. Llewellyn

COP 3223: C Programming (File Processing) Page 9 © Dr. Mark J. Llewellyn

Think of the end-of-file marker as

being right after the 0 in the 30 on the

last line of the file.

COP 3223: C Programming (File Processing) Page 10 © Dr. Mark J. Llewellyn

Detecting End-Of-File
• Notice in the program on page 8 that the first line from the file

is read before the while statement is entered and thus, the first

test for the end-of-file occurs after we have already read one

integer from the file.

• We are making the assumption that there is at least one integer

value in the input file. If this is not true, would our program

would fail? (Try it!)

• Answer: No, it will not fail, since the fscanf call on line 16

will actually read the end-of-file marker (it has an integer

representation (as do all characters) and thus when the call to

feof occurs in the conditional expression of the while

statement in line 17, it will return true and since not true is

false, the loop will not execute.

COP 3223: C Programming (File Processing) Page 11 © Dr. Mark J. Llewellyn

Detecting End-Of-File
• What would happen if we redid the program on page 8 using a

do…while loop instead of a while loop, but making no other

changes. Would it still work correctly? (Try this one too.)

• Answer: Yes, assuming that there is at least one actual value in

the file, otherwise, the end-of-file marker will be read, but the

feof test will not occur until after we’ve gone through the

body of the loop the first time and actually produced a sum,

whose value will be useless.

COP 3223: C Programming (File Processing) Page 12 © Dr. Mark J. Llewellyn

COP 3223: C Programming (File Processing) Page 13 © Dr. Mark J. Llewellyn

A Little Case Study
• A bank has a number of customer accounts. Each account has

a balance, which is either positive, zero, or negative (over-

drawn). Let’s assume that an account number is a 5-digit

integer.

1. We want to create a program that will ask the user to enter a

series of account numbers and their corresponding balances

and write this information to a file.

2. Then we want to create a second program that will allow a

user to print listings of all the accounts that have either

positive, zero, or negative balances. We want the second

program to be “menu-driven” where we give the user a choice

of options to be performed by the program.

COP 3223: C Programming (File Processing) Page 14 © Dr. Mark J. Llewellyn

A Little Case Study – Part 1
• To solve the first part of our problem, let’s assume that we’ll

ask the user to first tell the program how many accounts and

balances they will enter.

• Once we have this number, we can run a counted loop (a for

statement) the read the account number and corresponding

balance for each account to be entered.

• Once each account number and balance have been entered, the

program will write the values to an output file. Let’s call this

file “accounts.dat”.

• Let’s do this first step now:

COP 3223: C Programming (File Processing) Page 15 © Dr. Mark J. Llewellyn

COP 3223: C Programming (File Processing) Page 16 © Dr. Mark J. Llewellyn

User interaction with

program 1

The contents of the output

file “accounts.dat” after

user entered the data

COP 3223: C Programming (File Processing) Page 17 © Dr. Mark J. Llewellyn

A Little Case Study – Part 2
• To solve the second part of our problem, we need to create a

menu of options for the user. Let’s assume that option 1 will

be to print accounts with positive balances, option 2 accounts

with zero balances, option 3 accounts with negative balances,

and option 4 will be to quit the program.

• The program needs to display the menu once and then

continue to loop until the user enters option 4 to stop the

program.

• We’ll need to be able to scan the file from top to bottom

repeatedly. So far, we’ve only opened a file, moved through

it from top to bottom once, and then closed the file. If you

need to move through the file again, use the rewind

function, whose format is rewind(fileptr);

COP 3223: C Programming (File Processing) Page 18 © Dr. Mark J. Llewellyn

A Little Case Study – Part 2
• When you attempt to solve problems similar to this, you should

always use a systematic and methodical approach.

1. Sketch out the main objectives of your solution. In this case (1)

creating the menu and (2) listing the different options given to

the user.

2. Proceed in a systematic fashion with your coding. Thus, first

write the code that creates the menu and asks the user for their

choice and test that you are correctly reading in the value entered

by the user. Then write the code for each option separately and

test each case before moving on to other cases. By systematic

coding and testing you will be able to narrow down where errors

occur and accomplish more than attempting to put everything

into code and once and having to figure out where things are

going wrong.

COP 3223: C Programming (File Processing) Page 19 © Dr. Mark J. Llewellyn

COP 3223: C Programming (File Processing) Page 20 © Dr. Mark J. Llewellyn

COP 3223: C Programming (File Processing) Page 21 © Dr. Mark J. Llewellyn

COP 3223: C Programming (File Processing) Page 22 © Dr. Mark J. Llewellyn

User interaction with

program 2

COP 3223: C Programming (File Processing) Page 23 © Dr. Mark J. Llewellyn

Practice Problems

1. Modify the case study program part 1 on page 15 so that it reads
the account information from an input file where there is no
indication of how many accounts are listed in the file.

2. Modify the case study program part 2 so that the output of the
various cases is written to both the screen and to an output file
named “account results.dat”.

3. Modify the case study program part 2 so that the menu is
reprinted after each option selected by the user has finished
producing output.

